\(\int \frac {x^3 (a+b \log (c (d+e x)^n))}{f+g x^2} \, dx\) [257]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 278 \[ \int \frac {x^3 \left (a+b \log \left (c (d+e x)^n\right )\right )}{f+g x^2} \, dx=\frac {b d n x}{2 e g}-\frac {b n x^2}{4 g}-\frac {b d^2 n \log (d+e x)}{2 e^2 g}+\frac {x^2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{2 g}-\frac {f \left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 g^2}-\frac {f \left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 g^2}-\frac {b f n \operatorname {PolyLog}\left (2,-\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 g^2}-\frac {b f n \operatorname {PolyLog}\left (2,\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 g^2} \]

[Out]

1/2*b*d*n*x/e/g-1/4*b*n*x^2/g-1/2*b*d^2*n*ln(e*x+d)/e^2/g+1/2*x^2*(a+b*ln(c*(e*x+d)^n))/g-1/2*f*(a+b*ln(c*(e*x
+d)^n))*ln(e*((-f)^(1/2)-x*g^(1/2))/(e*(-f)^(1/2)+d*g^(1/2)))/g^2-1/2*f*(a+b*ln(c*(e*x+d)^n))*ln(e*((-f)^(1/2)
+x*g^(1/2))/(e*(-f)^(1/2)-d*g^(1/2)))/g^2-1/2*b*f*n*polylog(2,-(e*x+d)*g^(1/2)/(e*(-f)^(1/2)-d*g^(1/2)))/g^2-1
/2*b*f*n*polylog(2,(e*x+d)*g^(1/2)/(e*(-f)^(1/2)+d*g^(1/2)))/g^2

Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 278, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.296, Rules used = {272, 45, 2463, 2442, 266, 2441, 2440, 2438} \[ \int \frac {x^3 \left (a+b \log \left (c (d+e x)^n\right )\right )}{f+g x^2} \, dx=-\frac {f \log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{d \sqrt {g}+e \sqrt {-f}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{2 g^2}-\frac {f \log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{2 g^2}+\frac {x^2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{2 g}-\frac {b d^2 n \log (d+e x)}{2 e^2 g}-\frac {b f n \operatorname {PolyLog}\left (2,-\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 g^2}-\frac {b f n \operatorname {PolyLog}\left (2,\frac {\sqrt {g} (d+e x)}{\sqrt {g} d+e \sqrt {-f}}\right )}{2 g^2}+\frac {b d n x}{2 e g}-\frac {b n x^2}{4 g} \]

[In]

Int[(x^3*(a + b*Log[c*(d + e*x)^n]))/(f + g*x^2),x]

[Out]

(b*d*n*x)/(2*e*g) - (b*n*x^2)/(4*g) - (b*d^2*n*Log[d + e*x])/(2*e^2*g) + (x^2*(a + b*Log[c*(d + e*x)^n]))/(2*g
) - (f*(a + b*Log[c*(d + e*x)^n])*Log[(e*(Sqrt[-f] - Sqrt[g]*x))/(e*Sqrt[-f] + d*Sqrt[g])])/(2*g^2) - (f*(a +
b*Log[c*(d + e*x)^n])*Log[(e*(Sqrt[-f] + Sqrt[g]*x))/(e*Sqrt[-f] - d*Sqrt[g])])/(2*g^2) - (b*f*n*PolyLog[2, -(
(Sqrt[g]*(d + e*x))/(e*Sqrt[-f] - d*Sqrt[g]))])/(2*g^2) - (b*f*n*PolyLog[2, (Sqrt[g]*(d + e*x))/(e*Sqrt[-f] +
d*Sqrt[g])])/(2*g^2)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 266

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 2440

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Dist[1/g, Subst[Int[(a +
 b*Log[1 + c*e*(x/g)])/x, x], x, f + g*x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && EqQ[g
 + c*(e*f - d*g), 0]

Rule 2441

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[Log[e*((f + g
*x)/(e*f - d*g))]*((a + b*Log[c*(d + e*x)^n])/g), x] - Dist[b*e*(n/g), Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]

Rule 2442

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[(f + g*
x)^(q + 1)*((a + b*Log[c*(d + e*x)^n])/(g*(q + 1))), x] - Dist[b*e*(n/(g*(q + 1))), Int[(f + g*x)^(q + 1)/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]

Rule 2463

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((h_.)*(x_))^(m_.)*((f_) + (g_.)*(x_)^(r_.))^(q
_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*Log[c*(d + e*x)^n])^p, (h*x)^m*(f + g*x^r)^q, x], x] /; FreeQ[{a,
 b, c, d, e, f, g, h, m, n, p, q, r}, x] && IntegerQ[m] && IntegerQ[q]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {x \left (a+b \log \left (c (d+e x)^n\right )\right )}{g}-\frac {f x \left (a+b \log \left (c (d+e x)^n\right )\right )}{g \left (f+g x^2\right )}\right ) \, dx \\ & = \frac {\int x \left (a+b \log \left (c (d+e x)^n\right )\right ) \, dx}{g}-\frac {f \int \frac {x \left (a+b \log \left (c (d+e x)^n\right )\right )}{f+g x^2} \, dx}{g} \\ & = \frac {x^2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{2 g}-\frac {f \int \left (-\frac {a+b \log \left (c (d+e x)^n\right )}{2 \sqrt {g} \left (\sqrt {-f}-\sqrt {g} x\right )}+\frac {a+b \log \left (c (d+e x)^n\right )}{2 \sqrt {g} \left (\sqrt {-f}+\sqrt {g} x\right )}\right ) \, dx}{g}-\frac {(b e n) \int \frac {x^2}{d+e x} \, dx}{2 g} \\ & = \frac {x^2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{2 g}+\frac {f \int \frac {a+b \log \left (c (d+e x)^n\right )}{\sqrt {-f}-\sqrt {g} x} \, dx}{2 g^{3/2}}-\frac {f \int \frac {a+b \log \left (c (d+e x)^n\right )}{\sqrt {-f}+\sqrt {g} x} \, dx}{2 g^{3/2}}-\frac {(b e n) \int \left (-\frac {d}{e^2}+\frac {x}{e}+\frac {d^2}{e^2 (d+e x)}\right ) \, dx}{2 g} \\ & = \frac {b d n x}{2 e g}-\frac {b n x^2}{4 g}-\frac {b d^2 n \log (d+e x)}{2 e^2 g}+\frac {x^2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{2 g}-\frac {f \left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 g^2}-\frac {f \left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 g^2}+\frac {(b e f n) \int \frac {\log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{e \sqrt {-f}+d \sqrt {g}}\right )}{d+e x} \, dx}{2 g^2}+\frac {(b e f n) \int \frac {\log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{d+e x} \, dx}{2 g^2} \\ & = \frac {b d n x}{2 e g}-\frac {b n x^2}{4 g}-\frac {b d^2 n \log (d+e x)}{2 e^2 g}+\frac {x^2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{2 g}-\frac {f \left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 g^2}-\frac {f \left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 g^2}+\frac {(b f n) \text {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {g} x}{e \sqrt {-f}-d \sqrt {g}}\right )}{x} \, dx,x,d+e x\right )}{2 g^2}+\frac {(b f n) \text {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {g} x}{e \sqrt {-f}+d \sqrt {g}}\right )}{x} \, dx,x,d+e x\right )}{2 g^2} \\ & = \frac {b d n x}{2 e g}-\frac {b n x^2}{4 g}-\frac {b d^2 n \log (d+e x)}{2 e^2 g}+\frac {x^2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{2 g}-\frac {f \left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 g^2}-\frac {f \left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 g^2}-\frac {b f n \text {Li}_2\left (-\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 g^2}-\frac {b f n \text {Li}_2\left (\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 g^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 243, normalized size of antiderivative = 0.87 \[ \int \frac {x^3 \left (a+b \log \left (c (d+e x)^n\right )\right )}{f+g x^2} \, dx=-\frac {\frac {b g n \left (e x (-2 d+e x)+2 d^2 \log (d+e x)\right )}{e^2}-2 g x^2 \left (a+b \log \left (c (d+e x)^n\right )\right )+2 f \left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{e \sqrt {-f}+d \sqrt {g}}\right )+2 f \left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right )+2 b f n \operatorname {PolyLog}\left (2,-\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}-d \sqrt {g}}\right )+2 b f n \operatorname {PolyLog}\left (2,\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}+d \sqrt {g}}\right )}{4 g^2} \]

[In]

Integrate[(x^3*(a + b*Log[c*(d + e*x)^n]))/(f + g*x^2),x]

[Out]

-1/4*((b*g*n*(e*x*(-2*d + e*x) + 2*d^2*Log[d + e*x]))/e^2 - 2*g*x^2*(a + b*Log[c*(d + e*x)^n]) + 2*f*(a + b*Lo
g[c*(d + e*x)^n])*Log[(e*(Sqrt[-f] - Sqrt[g]*x))/(e*Sqrt[-f] + d*Sqrt[g])] + 2*f*(a + b*Log[c*(d + e*x)^n])*Lo
g[(e*(Sqrt[-f] + Sqrt[g]*x))/(e*Sqrt[-f] - d*Sqrt[g])] + 2*b*f*n*PolyLog[2, -((Sqrt[g]*(d + e*x))/(e*Sqrt[-f]
- d*Sqrt[g]))] + 2*b*f*n*PolyLog[2, (Sqrt[g]*(d + e*x))/(e*Sqrt[-f] + d*Sqrt[g])])/g^2

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.94 (sec) , antiderivative size = 431, normalized size of antiderivative = 1.55

method result size
risch \(\frac {b \ln \left (\left (e x +d \right )^{n}\right ) x^{2}}{2 g}-\frac {b \ln \left (\left (e x +d \right )^{n}\right ) f \ln \left (g \,x^{2}+f \right )}{2 g^{2}}-\frac {b n \,x^{2}}{4 g}+\frac {b d n x}{2 e g}-\frac {b \,d^{2} n \ln \left (e x +d \right )}{2 e^{2} g}+\frac {b n f \ln \left (e x +d \right ) \ln \left (g \,x^{2}+f \right )}{2 g^{2}}-\frac {b n f \ln \left (e x +d \right ) \ln \left (\frac {e \sqrt {-f g}-g \left (e x +d \right )+d g}{e \sqrt {-f g}+d g}\right )}{2 g^{2}}-\frac {b n f \ln \left (e x +d \right ) \ln \left (\frac {e \sqrt {-f g}+g \left (e x +d \right )-d g}{e \sqrt {-f g}-d g}\right )}{2 g^{2}}-\frac {b n f \operatorname {dilog}\left (\frac {e \sqrt {-f g}-g \left (e x +d \right )+d g}{e \sqrt {-f g}+d g}\right )}{2 g^{2}}-\frac {b n f \operatorname {dilog}\left (\frac {e \sqrt {-f g}+g \left (e x +d \right )-d g}{e \sqrt {-f g}-d g}\right )}{2 g^{2}}+\left (-\frac {i b \pi \,\operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right ) \operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i \left (e x +d \right )^{n}\right )}{2}+\frac {i \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{2} b}{2}+\frac {i \pi \,\operatorname {csgn}\left (i \left (e x +d \right )^{n}\right ) \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{2} b}{2}-\frac {i \pi \operatorname {csgn}\left (i c \left (e x +d \right )^{n}\right )^{3} b}{2}+b \ln \left (c \right )+a \right ) \left (\frac {x^{2}}{2 g}-\frac {f \ln \left (g \,x^{2}+f \right )}{2 g^{2}}\right )\) \(431\)

[In]

int(x^3*(a+b*ln(c*(e*x+d)^n))/(g*x^2+f),x,method=_RETURNVERBOSE)

[Out]

1/2*b*ln((e*x+d)^n)/g*x^2-1/2*b*ln((e*x+d)^n)*f/g^2*ln(g*x^2+f)-1/4*b*n*x^2/g+1/2*b*d*n*x/e/g-1/2*b*d^2*n*ln(e
*x+d)/e^2/g+1/2*b*n*f/g^2*ln(e*x+d)*ln(g*x^2+f)-1/2*b*n*f/g^2*ln(e*x+d)*ln((e*(-f*g)^(1/2)-g*(e*x+d)+d*g)/(e*(
-f*g)^(1/2)+d*g))-1/2*b*n*f/g^2*ln(e*x+d)*ln((e*(-f*g)^(1/2)+g*(e*x+d)-d*g)/(e*(-f*g)^(1/2)-d*g))-1/2*b*n*f/g^
2*dilog((e*(-f*g)^(1/2)-g*(e*x+d)+d*g)/(e*(-f*g)^(1/2)+d*g))-1/2*b*n*f/g^2*dilog((e*(-f*g)^(1/2)+g*(e*x+d)-d*g
)/(e*(-f*g)^(1/2)-d*g))+(-1/2*I*b*Pi*csgn(I*c)*csgn(I*(e*x+d)^n)*csgn(I*c*(e*x+d)^n)+1/2*I*b*Pi*csgn(I*c)*csgn
(I*c*(e*x+d)^n)^2+1/2*I*b*Pi*csgn(I*(e*x+d)^n)*csgn(I*c*(e*x+d)^n)^2-1/2*I*b*Pi*csgn(I*c*(e*x+d)^n)^3+b*ln(c)+
a)*(1/2*x^2/g-1/2*f/g^2*ln(g*x^2+f))

Fricas [F]

\[ \int \frac {x^3 \left (a+b \log \left (c (d+e x)^n\right )\right )}{f+g x^2} \, dx=\int { \frac {{\left (b \log \left ({\left (e x + d\right )}^{n} c\right ) + a\right )} x^{3}}{g x^{2} + f} \,d x } \]

[In]

integrate(x^3*(a+b*log(c*(e*x+d)^n))/(g*x^2+f),x, algorithm="fricas")

[Out]

integral((b*x^3*log((e*x + d)^n*c) + a*x^3)/(g*x^2 + f), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {x^3 \left (a+b \log \left (c (d+e x)^n\right )\right )}{f+g x^2} \, dx=\text {Timed out} \]

[In]

integrate(x**3*(a+b*ln(c*(e*x+d)**n))/(g*x**2+f),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {x^3 \left (a+b \log \left (c (d+e x)^n\right )\right )}{f+g x^2} \, dx=\int { \frac {{\left (b \log \left ({\left (e x + d\right )}^{n} c\right ) + a\right )} x^{3}}{g x^{2} + f} \,d x } \]

[In]

integrate(x^3*(a+b*log(c*(e*x+d)^n))/(g*x^2+f),x, algorithm="maxima")

[Out]

1/2*a*(x^2/g - f*log(g*x^2 + f)/g^2) + b*integrate((x^3*log((e*x + d)^n) + x^3*log(c))/(g*x^2 + f), x)

Giac [F]

\[ \int \frac {x^3 \left (a+b \log \left (c (d+e x)^n\right )\right )}{f+g x^2} \, dx=\int { \frac {{\left (b \log \left ({\left (e x + d\right )}^{n} c\right ) + a\right )} x^{3}}{g x^{2} + f} \,d x } \]

[In]

integrate(x^3*(a+b*log(c*(e*x+d)^n))/(g*x^2+f),x, algorithm="giac")

[Out]

integrate((b*log((e*x + d)^n*c) + a)*x^3/(g*x^2 + f), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 \left (a+b \log \left (c (d+e x)^n\right )\right )}{f+g x^2} \, dx=\int \frac {x^3\,\left (a+b\,\ln \left (c\,{\left (d+e\,x\right )}^n\right )\right )}{g\,x^2+f} \,d x \]

[In]

int((x^3*(a + b*log(c*(d + e*x)^n)))/(f + g*x^2),x)

[Out]

int((x^3*(a + b*log(c*(d + e*x)^n)))/(f + g*x^2), x)